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Abstract: Because of the low value of the convective heat 
transfer coefficient between the absorber plate and the air, the 
thermal efficiency of a solar air heater is greatly reduced, 
resulting in high absorber plate temperatures and large heat 
losses to the surrounding environment. The analysis of heat 
transmission in a solar air heater is presented in this research, 
which makes use of Computational Fluid Dynamics. An 
investigation is conducted into the effect of the Reynolds number 
on the Nusselt number and friction factor. It is necessary to study 
and visually depict the nature of the flow across the duct of a solar 
air heater, which is done using a commercial finite volume 
software. The findings of the CFD simulations are found to be in 
excellent agreement with the experimental results. Because of 
this, the average Nusselt number increases as the Reynolds 
number grows, and the average friction factor reduces as the 
Reynolds number increases as well. 

Keywords: Flat Plate Solar Collector, Heat Transfer, Pressure 
Drop, Solar Energy. 

I. INTRODUCTION 

A low convective heat transfer coefficient between the 

absorber plate and the air has been discovered to produce 
poor thermal performance in conventional solar air heaters. 
This is due to the low convective heat transfer coefficient 
between the absorber plate and the air. It has been discovered 
that adding artificial rib roughness to the underside of the 
absorber plates can significantly improve the heat transfer 
coefficient. As a result of their ease of use, solar air warmers 
are one of the cheapest and most extensively used solar 
energy collection devices available. They have a great deal of 
potential in low temperature applications, particularly in the 
drying of agricultural products [1-22]. The thermal efficiency 
of a solar air heater is significantly reduced as a result of the 
low value of the convective heat transfer coefficient between 
the absorber plate and the surrounding air, which results in a 
high temperature on the absorber plate and significant heat 
losses to the surrounding environment. It has been discovered 
that the creation of a laminar sub-layer on the 
heat-transferring surface of the absorber plate is the primary 
source of thermal resistance to heat transfer in this system. 
Projections that produce artificial roughness on the heat 
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transfer surface, primarily near the wall, or disrupt the laminar 
sub-layer, increase the heat transfer coefficient by increasing 
the turbulence near the wall. The fan or blower, on the other 
hand, must provide the energy necessary to generate such 
turbulence. Consequently, only the laminar sub-layer, which 
is extremely close to the heat transfer surface, should be 
subjected to turbulence, while the rest of the layer should 
remain smooth. In an effort to improve convective heat 
transfer while minimising pumping losses, some researchers 
have sought to create a roughness element [23-44]. 

As a result of their ease of use, solar air warmers are one of 
the cheapest and most extensively used solar energy 
collection devices available. They have a great deal of 
potential in low temperature applications, particularly in the 
drying of agricultural products. The thermal efficiency of a 
solar air heater is significantly reduced as a result of the low 
value of the convective heat transfer coefficient between the 
absorber plate and the surrounding air, which results in a high 
temperature on the absorber plate and significant heat losses 
to the surrounding environment. It has been discovered that 
the creation of a laminar sub-layer on the heat-transferring 
surface of the absorber plate is the primary source of thermal 
resistance to heat transfer in this system. Projections that 
produce artificial roughness on the heat transfer surface, 
primarily near the wall, or disrupt the laminar sub-layer, 
increase the heat transfer coefficient by increasing the 
turbulence near the wall. The fan or blower, on the other hand, 
must provide the energy necessary to generate such 
turbulence. Consequently, only the laminar sub-layer, which 
is extremely close to the heat transfer surface, should be 
subjected to turbulence, while the rest of the layer should 
remain smooth. In an attempt to create a roughness element 
that can improve convective heat transfer while minimising 
pumping losses, several researchers have made attempts. 
Providing a system that can meet 100 percent of the energy 
demand all of the time would result in a system that is 
significantly larger for the most of the time. This would render 
the venture unprofitable because of the high initial cost. As a 
result, solar energy systems are frequently utilised in 
conjunction with auxiliary systems that use conventional 
energy. The supplemental sources assist in meeting 
unexpectedly high demand conditions. It also addresses the 
dilemma that arises when solar energy is not available in 
sufficient quantities due to severe weather conditions [45-77]. 
The goal of our research is to increase the accuracy of the flow 
forecast in the solar air heater. Fluent, a Computational Fluid 
Dynamics code, will have a near-wall function for TKE that 
will be implemented.  
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The discretization of the governing equations was 
accomplished through the use of second order upwind and the 
SIMPLE algorithm.  

In order to handle a particular physical problem, the 
FLUENT software must first solve the following 
mathematical equations, which regulate fluid flow, heat 
transfer, and associated phenomena.         

II.  PROCEDURE AND ANALYSIS 

Model testing and field testing have become increasingly 
time-consuming due to the advent of powerful and fast 
computers, which have opened up new opportunities to 
replace them. In this case, the differential equations 
representing fluid motion are solved either by using a finite 
volume approach or, less frequently, by using a finite element 
method, which is more time consuming due to the greater 
amount of CPU time it requires. These approaches, which are 
used for the solution of fluid equations of motion, are referred 
to as computation fluid dynamics, or CFD, for short. 

In Fig. 1, the 2-D computational domain utilised for CFD 
analysis has a height (H) of 20 mm, a width (W) of 100 mm, 
and a length of 461 mm, with the height (H) being 20 mm, and 
the width (W) being 100 mm. In the present study, a 
2-dimensional computational domain of an intentionally 
roughened solar air heater has been used, which is similar to 
the computational domain used by in their previous work. 

 

 
Fig. 1. 2-D computational domain 

Non-uniform mesh is constructed following the definition 
of the computational domain. The presence of additional cells 
near the plate is beneficial when designing this mesh because 
we want to resolve the turbulent boundary layer, which is 
quite thin when compared to the height of the flow field, and 
so must be resolved.  

Boundary criteria have been provided after the mesh has 
been generated. We will first state that the duct input is 
located on the left edge and the duct exit is located on the right 
edge. The top surface is represented by the top edge, and the 
bottom edges are represented by the input length, outflow 
length, and solar plate. Turbulator walls are defined as the 
internal borders of a rectangle 2D duct on all of its internal 
edges. 

The domain meshing is carried out with the help of the 

ANSYS ICEM CFD V12.1 programme. Because 
low-Reynolds-number turbulence models are used, the grids 
are created in such a way that they are extremely fine. The 
present non-uniform quadrilateral mesh included 161,568 
quad cells with a non-uniform quad grid of 0.22 mm cell size 
and had a non-uniform quad grid of 0.22 mm cell size. This 
dimension is appropriate for resolving the laminar sub-layer. 
The number of cells in the grid for the grid independence test 
is adjusted in five increments from 103,231 to 197,977. It is 
discovered that after 161,568 cells, an increase in the number 
of cells results in a variation in the Nusselt number and 
friction factor value of less than 1 percent, which is taken as a 
condition for grid independence. 

The preceding experimental investigation is simulated 
using multiple low Reynolds number models, including the 
Standard k model, the Renormalization-group k model, the 
Realizable k model, and the Shear stress transport k model, in 
order to determine the best turbulence model to use. The 
results of several models are compared to those obtained by 
experimentation. The RNG k model is chosen because it 
produces findings that are more similar to those obtained 
experimentally. 

Because the variance in the working fluid, air, is so small, it 
is considered to be incompressible during the entire operating 
range of the duct. The Reynolds number was used to compute 
the mean inlet velocity of the flow in the test tube. The 
velocity boundary condition has been considered as the intake 
boundary condition, and the outflow boundary condition has 
been considered as the outlet boundary condition. The 
discretization of the governing equations was accomplished 
through the use of second order upwind and the SIMPLE 
algorithm. In order to handle a particular physical problem, 
the FLUENT software must first solve the following 
mathematical equations, which regulate fluid flow, heat 
transfer, and associated phenomena. 

III. RESULTS AND DISCUSSIONS  

Graphs are used to display the average Nusselt number at 
various Reynolds numbers, and temperature and velocity 
contours are used to display temperature and velocity at 
specific sections with a constant Reynolds number. As shown 
in Fig. 2 for varied values of relative roughness height (e/D) 
and a fixed value of pitch, the effect of Reynolds number on 
average Nusselt number can be observed. The average 
Nusselt number is reported to grow with increasing Reynolds 
number, which is owing to an increase in turbulence intensity 
induced by an increase in turbulence kinetic energy and 
turbulence dissipation rate, as well as an increase in 
turbulence kinetic energy and dissipation rate. 

At a Reynolds number of 18000, the roughened duct with a 
relative roughness height of 0.06 has the greatest Nusselt 
number (Nu= 140.4) and the highest Nusselt number (Nu= 
140.4). At a Reynolds number of 3800, the roughened duct 
with a relative roughness height (e/d) of 0.015 has the lowest 
Nusselt number, while the smooth duct has the highest.  
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At a Reynolds number of 18000, it is discovered that the 
maximum enhancement of average Nusselt number is 2.78 
times more than that of a smooth duct for relative roughness 
height of 0.06 and a Reynolds number of 18000.  

 

 

Fig. 2. Variation in Nusselt number 

The friction factor reduces with rising values of the 
Reynolds number in all circumstances, as expected, due to the 
suppression of the laminar sub-layer in the duct for fully 
developed turbulent flow in the duct, as illustrated in Fig 3. It 
has been discovered that the greatest and minimum values of 
friction factor occur at relative roughness height (e/d) values 
of 0.06 and 0.015 for the range of parameters examined, 
respectively. Also discovered is that the greatest enhancement 
of average friction factor for a relative roughness height of 
0.06 at a Reynolds number of 3800 is found to be 4.24 times 
greater than for a smooth duct at the same Reynolds number. 

 

Fig. 3. Variation in Friction factor 

IV. CONCLUSION 

The An investigation has been carried out into the influence 
of relative roughness pitch and Reynolds number on the heat 
transfer coefficient and friction factor. In the medium 
Reynolds number flow (Re = 3800–18,000), computational 
fluid dynamics (CFD) investigations have been carried out. 
The following results were reached as a result of 

computational fluid dynamics (CFD) research of heat and 
fluid flow in a rectangular duct with protrusions as roughness 
elements on one broad wall subjected to a uniform heat flux: 

1. In this work, the Renormalization-group (RNG) k- 
turbulence model predicted findings that were very close to 
the experimental results, providing confidence in the 
predictions made by CFD analysis. The RNG k-turbulence 
model has been validated for smooth ducts, and a grid 
independence test has been performed to examine the 
variation as the number of cells increases. 

2. The average Nusselt number grows as the Reynolds 
number rises in the equation. The maximum value of average 
Nusselt number is discovered to be 140.4 for a relative 
roughness height of 0.06 at a higher Reynolds number of 
18000, with a relative roughness height of 0.06 at a higher 
Reynolds number of 18,000. According to the results, the 
greatest improvement in average Nusselt number is 2.78 times 
more than that of a smooth duct for a relative roughness height 
of 0.06. 

3. Increases in the Reynolds number result in a decrease in 
the average friction factor. The greatest value of average 
friction factor is discovered to be 0.0428 for a relative 
roughness height of 0.06 at a lower Reynolds number of 3800, 
with a relative roughness height of 0.06 and a Reynolds 
number of 3800. Using a relative roughness height of 0.06, it 
is discovered that the maximum improvement in average 
friction factor is 4.24 times greater than that of a smooth duct. 
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