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Mass Accretion During the Motion of Raindrops

Sneha Dey, A. Ghorai

Abstract: Exploration of dynamics of raindrops is one of the
simple yet most complicated mechanical problems. Mass accretion
from moist air during the motion of raindrop through resistive
medium holds an arbitrary power law equation. Itsintegral partis
the change of shape, terminal motions and terminal solutions, etc.
Classical Newtonian formalism is used to formulate a
mathematical model of generalized first order differential
equation. We have discussed about the terminal velocity of
raindrop and its variation with the extensive use of python

program and library. It is found that terminal velocity vi®® is
achieved within 20 seconds where a = (0,%,%), B=(0,1) and

n=0,1,2,3,4,... Its variations due to mass accretion roughly
followsthe earlier predicted rangeg/7 tog/3.

Keywords: Air Resistance, Mass Accretion Rate, Raindrop,
Terminal Velocity.

I. INTRODUCTION

Expl oration of dynamics of raindropsis one of thesimple

yet most complicated mechanical problems studied since late
40s of last century. During its fall a raindrop attains a
constant velocity, caled the terminal velocity [1]. The
earliest work isto determine terminal velocity of raindrops by
electronic technique. An empirical study of the terminal
velocities of faling raindrops for different drop sizes was
presented by Gunn and Kinzer [2]. If vy in meter/sec be the
terminal velocity of araindrop and R in meters be its radius
(assuming raindrop to be spherical) its terminal velocity can
be expressed as a function of its size and is given by v =

/%. The droplets were taken very small to satisfy
Stokes law and accuracy of the measurement was better than

0.7%. Due to air turbulence, water dropletsin clouds collide,
hence produce larger droplets. Thus raindrops vary widely in
their shapes, sizes, velocities and have a wide size
distribution. An empirical distribution for raindrop size was
the Marshall and Palmer distribution [3]. Beard and Chuang
[4] described the shape of a raindrop as a 10th order cosine
distortion of a sphere. The shape of a raindrop was be
described as a 10th order cosine distortion of a sphere by
Beard and Chuang [4]. With increase in raindrop size, it
becomes an oblate spheroid. Larger the size of raindrops,
more are severely distortion, while smaller drops are amost
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spherical. The significant fraction of rain contains raindrops
of less than 1mm in size and their shapes can be well
approximated like a sphere. Their shapeswill be governed by
internal hydrostatic pressure, hydrodynamic pressure of
medium and surfacetension. A raindrop is axialy symmetric
along the line of motion. Measurement on rain at night in
backscattered light was done by Beard et al [5]. Recently
piezoelectric energy harvesting techniquesis used to capture
vibration, motion and acoustic noise of raindrops which is
converted to electrical output. Recently vibration, motion and
acoustic noise of raindrops which are converted to electrical
output, are measured by piezoelectric energy harvesting
techniques[6]. In recent yearsit may be an alternative energy
source. The experimental results show a power output for one
unit at around 2.5 mW. The kinematic behaviour of falling
raindrop was deduced for a variety of mass accretion
mechanisms and it was related to various closely related
mechanisms. Assuming increase in mass of raindrop linearly
with increasing distance and time, Krane [7] suggested a
proportionality relation between mass accretion dm/dt, mass
m and velocity vwith different powers of these two variables.

Adawi [8] suggested 'z—r: =cm® with a = 0,2 for zero
acceleration case. Partovi and Aston [9] took air resistance to
this problem which is proportional to the square of velocity.

Sokall [10] generalized Krane’s idea by introducing CL—T =
cm®v® with easy case (a,8) = ,0) and difficult case

@p) =C.1).

All these suggest a need to generalize the dynamics of
raindrops. In this article this generalization and
corresponding calculation is done.

[I. FORMULATIONS

Raindrop problem is more interesting than rocket motion
because when generalized, its motion through moist air in al

directions (basically up and down) F = m%+i—?6 is a

complicated one. This force consists of downward weight of
the raindrop mgk, buoyant force —mp,/p.k (p, and p,, are
the density of the medium and raindrop respectively), and the
resistivefrictional force of the medium, which is proportional
to the nth power of velocity —bv"k. Assuminga = g(1 —
pa/pPw) the new raindrop equation is
dv  dm., o n

m-——+ ——=V = amk — bv"k (1)
Here b is defined as the resistive force per unit nth power of
velocity. Lynch and Lommatsch [11] assumed the
cross-sectional area of raindrop of the form A=
3.3108 x (2R)221672 and the mass of raindrop of the form
m = 957.251 x (2R)3%9275 where R is the approximate
radius of raindrop.
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Finally they took the value of resistive constant as b =
0.15p,A . Generdly, for resistive force proportiona to
velocity we put n=1. But generalized procedure for asolution
is to be taken in those cases for the examples where n>1. In
case of mass accretion in moist air the raindrop collects mass

and rate of mass accretion may be written as‘il—'zl = p,VA.

Here A = R? is the projected area of the raindrop and it is
the largest cross section. For spherical raindrop, the increase
in radius is proportional to m'/3 and the increase in area is
proportional to m?/3. Generalization yields CL—T = cm®vP
where ¢ > 0 is a constant and a and  are exponents with
values earlier mentioned [10]. If the actual shape of the
raindrop is spherical then the value of the constant c can be
written as [9]

mR2 )

C=F—"7"—
(§“R3 pw)*

1. RESULTSAND DISCUSSION

Analytical solutions are complicated [7-10] and
computational solutions are comparatively easier. No mass
accretion case of equation (1) was solved analytically and by
using python code [12]. It has been shown that thereisimpact
of diameter and mass of raindrop on terminal velocity and the
general solution was

nogn—L =2
Zl:l S1 r-v.m

©)

There a python code has been developed and they showed
that the termina velocity is reached almost within ten
seconds for mass of raindrop 0.5 mg and approximate
diameter 1 mm. The minimum raindrop size below which the
raindrop may be assumed to be a cloud particle is of mass
10% mg.
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Figure 1 Velocity-time graph in Sl unitsfor (o, ) =
(0,0)

General solution for mass accretion is rather more
complicated. For lower values of a, § and n we have done
both analytical and computational results for terminal

velocity ve*® which is

cv§?? + (v = aM 4
For examplewhena =0, 3 = 0, ¢ # 0 andn = 0 we have
dv 2bmo-am3. 1/,

— = 0 and thereforem = M and M = (T) . Here

dt
m, isthemass of raindrop at timet = 0.
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Figure 2 Velocity-timegraph in Sl unitsfor (o, B) =
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Figure 3 Velocity-time graph in Sl unitsfor (a,B) =
2
G0

Table 1 Input parameters

Air density p, inkg/m® 0.006211*
Water density p,, kg/m® 957.251*
Acceleration due to gravity 0.81*
ginm/s’ '
RadiusRinm 0.00001- 0.01
b =0.15p,A * 4.91x10%? - 6.84 x10°
a=g(1—pa/pw) 9.8099363

* Ref. [11]
Similar expressions fora=§, B=0,c#0 anda=§,
B=0,c+0are

1 1
CEO l CEO n

cvy’ Ms =aM —b(v;’ ) (5)
20 2 =

CV;3 Mz = aM — b(v;3 » (6)

Using Table 1 for input parameters the velocity versus time
plot of al the graphs of figure 1, 2 and 3 for o = O§§ and

B = 0 are amost similar to no mass accretion case [12]. Due
to mass accretion terminal velocity v§*° is not perfectly
horizontal to time axis ranging from approximately 1000 m/s
for lowest value of n = 0 to 20 m/sfor n = 4.
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The graphs show terminal velocity is achieved within 20
seconds. After that due to mass accretion it increases. More
the power of dissipation with velocity lessisthe increase in
mass. n = 0 and n = 1 case are very close to each other
indicating that they are amost independent of retardation.
More and more terminal velocity values v§*® for lower n
converge. Also these values increase with value of a.

Table 2 Slope of variation of terminal velocity (Sl units)
dueto mass accretion

n- 0 1 2 3 4
(a,8) (00) | 4899 | 4527 | 0194 | 0.024 | 0.008
(a,8) | (U30) | 3919 | 3907 | 0.949 | 0.086 | 0.022
(a,8) | (230) | 2450 | 2450 | 2450 | 1.319 | 0.245
(a,B) (01) | 3266 | 3266 | 2944 | 0.158 | 0.022
(a,8) | (U31) | 2450 | 2450 | 2449 | 1.968 | 0.199
(a,8) | (2/3,1) | 1.400 | 1.400 | 1.400 | 1.400 | 1.400
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Figure 4 Velocity-time graph in Sl unitsfor (a, ) =
0,1)
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Figure5 Velocity-time graph in Sl unitsfor (o, ) =
G D
Similar expressions like equations (5) and (6) are obtained
whenc # 0,a = O,g,gandﬁ = 1 which are

cv§l = aM — b(v§OhHn

1 c1
cv.? =aM—b(v.2 )"
T T
2 2
Cgl _ Cgl n
cvy =aM—b(v;’ )
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Figure 7 Velocity-timegraph in Sl unitsfor (o, B) =

G 1)
We have amost similar graphs of figure 4, 5 and 6 in these
three cases. The exception is that all terminal velocity v{*!
values converge to a single curve and with B it increases.
Figure 7 shows the dlight variation of velocity of figure 6
athough they converge.

All these seven plots clearly indicate that terminal velocity
v%“B gradually decreases with increasing n to a single value
for a = (Oé,g), B = (0,1). With the increase in the value of
(a,B) the splitting of the graphs for n=0,1,2,34,...
decreases with increase in time. The slope of these graphs
aso decreases except the last case of figure 6 which is
indicated in Table 2. Krane [7] pointed out that acceleration

takes the form%wherek is an integer larger than unity and

more specifically it takes the form % to %. Table 2 reflects

some matching with this range. It is clear from the
formulation as well as from table 2 that mass accretion

change termina velocity v;“B and that change decreases with
the increase of n. Computer programming using library of
python code for solving simultaneous equations of mass

accretion istaken into account.

000 025 050 075

IV. CONCLUSION

Here the general first order differential equation for mass
accretion of raindrop m% + cm®vAF*l = am — bv" is
solved using python program and library to achieve terminal

velocity ve™®,

Published By:
Lattice Science Publication
© Copyright: All rightsreserved.

www.ijap.latticescipub.com


http://doi.org/10.54105/ijap.C1019.041322
http://www.ijap.latticescipub.com/

Mass Accretion During the M otion of Raindrops

More the indices n of velocity dissipation less is the
increase in mass during the process. Also these values
increase with value of a. With the increase in the value of
(o, B) the splitting of the graphs decreases with increase in
time. Here the first order ordinary differential equation of
raindrop is solved analytically and using python program.
This will best suit for the developing undergraduate
theoretical knowledge and the novel ideas.
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APPENDIX

[Python Code]

import numpy as np

import matplotlib.pyplot as plt
from scipy.integrate import odeint
#some initial values

d = 0.001
R = d/2
c =0.3
pw = 1000

pa = 1.161 # at 300K, 1 bar

A 3.3108*(d**2.21672)

mO =1000 * 0.957251 * (d**3.09275) #initial
mass value

v0= 0

t0 = 0

g = 9.81

p =g * (l-(pa/pw) )
g = 1/2 * c*pa*A
sol = [v0]
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t= np.linspace(t0,200,600)
def rain(u,t,n,a,b):

ca = (np.pi * R**2)/(4/3 * np.pl * R**3 *
pw) **a

m, v =ul[0] , ull]

dmdt = ca * m**(a) * v**(b)

dvdt = p - ((g*(v**n))/m) - ca * m** (a-1)
*v*r* (b+1)

return [dmdt , dvdt]

for n in range(0,5):

u0 = [m0,vO0]

sol = odeint (rain,ul,t,args=(n,2/3,1))
m, v =so0l[:,0] , sol[:,1]

plt.plot(t, wv)
plt.legend(['$n=0$"','$n=1$", '$n=2S8", 'Sn=
3$|,|$n:4$|,|$n:5$|])
plt.title ('alpha 2/3
plt.xlabel ('time')
#fplt.yscale('log")
plt.ylabel ('velocity"')
plt.show()

beta ")
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